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Abstract

In the universal extra dimensions (UED) scenario, the tree level masses of the �rst

level Kaluza-Klein (KK) excitations of Standard Model particles are essentially degen-

erate. Radiative corrections will, however, lift this degeneracy, allowing the �rst level

excitations to decay to the lightest KK particle (LKP), which is the 
�. KK number

conservation implies that the LKP is stable. Then, since the SM particles radiated

during these decays are rather soft, the observation of KK excitations production and

decay in collider experiments will be quite diÆcult. We propose to add to this model

KK number violating interactions mediated by gravity, which allow the � to decay to

a photon and a KK graviton. For a variety a models and a large range of parameters,

these decays will occur within the detector. Thus, pair production of KK excitations

will give rise to a striking collider signal, consisting of two hard photons plus large

missing energy (due to escaping gravitons). We evaluate the cross-section for these

signals at the Tevatron and LHC, and derive the reach of these colliders in the search

for universal extra dimensions.

1 Introduction

In the past years there has been a resurgence of interest in the phenomenological implications
of models with extra dimensions. Such models appear naturally in the context of string
theories. However, since the compacti�cation scale is usually of order of the Planck mass,
this was thought to have few, if any, direct implications for experiments at the current
energy scale. Recent developements [1] have led to the construction of models where the
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radius of the compact extra dimensions is of order inverse TeV, or even larger [2], with rich
implications for the phenomenology of present day colliders [3].

In this paper we are concerned with an extension of the basic model proposed by Arkani-
Hamed, Dimopoulos and Dvali (ADD) [2]. In this universal extra dimensions (UED) sce-
nario [4], all the Standard Model (SM) �elds, fermions as well as bosons, propagate in the
bulk. This model has a number of interesting features, among which is the conservation
of Kaluza-Klein (KK) number for interactions involving SM particles or their excitations.
As a consequence, KK excitations can be produced only in pairs at colliders; also, tree-level
corrections to SM processes are forbidden, making the search for extra dimensions that much
more diÆcult. Some other features of this model are summarized in the following.

At tree level, the masses of the �rst level KK excitations are almost degenerate. The
splitting between the �rst level masses is due to the SM mass terms, and is extremely small,
except for particles with large SM mass. Therefore, at tree level most of the �rst level KK
excitations would be stable in the UED scenario, due to KK number conservation. The
parameters of this model may be subjected to restrictions due to cosmological constraints
on the existence of a large number of stable massive particles. In order to bypass these re-
strictions, some mechanisms provide for the decays of these excitations through KK-number
violating interactions mediated by gravity. Then, the experimental signature for producing
KK excitations at Tevatron or the Large Hadron Collider (LHC) would be two jets plus large
missing energy. An analysis of the phenomenological implications of this model in hadron
collider experiments has been performed in [5]. The results obtained indicate that, based on
Tevatron Run I data, the compacti�cation scale can be as low as 350 GeV. Moreover, the
Tevatron Run II can test for the existence of universal extra dimensions up to around 500
GeV, while the reach at LHC is about 3 TeV.

Loop corrections, however, can give important contributions to the masses of the KK
particles, thus potentially invalidating the above analysis. For the UED model, these correc-
tions have been evaluated in [6]. The result, dependent on some assumptions concerning the
renormalization of boundary terms, is that the radiative corrections to the tree level masses
are typically of order 10% for the strongly interacting particles (the heaviest one being the
gluon) and of order few percent for the the leptons and electroweak gauge bosons (the photon
being the lightest one). Naturally, the phenomenology of this model is quite di�erent from
the case discussed above. The excitations of the SM quarks and gluons produced at a hadron
collider will cascade decay to the �, which is the lightest KK excitation. If this particle is
stable, the experimental signature for this process will be the missing energy carried away by
the �'s, and the soft SM particles radiated away in the process of the cascade decays. The
phenomenology of this model has been studied in [7]. The total energy of these particles will
be of the order of the di�erence in mass between the KK particle which initiates the decay
chain (g� or q�) and the �, therefore they will be rather diÆcult to see in a hadron collider
environment. Moreover, the transverse mising energy (which is the quantity experimentally
accesible) is also small, making the rejection of SM backgrounds using this type of cuts quite
diÆcult. The LHC reach for this model has been estimated in [7] to be about 1.5 TeV.

The aim of this paper is to analyze the case when both types of decays, gravity mediated
and due to mass splitting, can occur. The experimental consequences of this model can be
quite remarkable. For example, in the case when the decay widths of the �rst level KK
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excitations due to mass splitting are much larger than the gravity mediated decay widths,
the gluon and quark excitations produced at a hadron colider will cascade decay to �, which
in turn will decay to a photon and a KK graviton. The experimental signal in this case will
be a striking two photon + missing energy event. Moreover, since the photons are coming
from the decay of a heavy particle (the �), their transverse momentum will be large, and
the signal will be easy to separate from the SM background. The exact fraction of KK
excitations decays leading to this kind of signal depends on the parameters of the model,
and will be discussed in the following sections.

The outline of this paper is as follows. In the next section we review the essential
features of the universal extra dimensions model at one loop. A mechanism for the gravity
mediated decay of the �rst level KK excitations is also presented. In Section 3 we discuss
the experimental consequences of the lightest KK particle (LKP) � decaying into a photon
and a graviton, and we give the collider reach for the discovery of UED at the Tevatron and
LHC in this scenario. We end with conclusions.

2 Universal Extra Dimensions

The UED scenario is an extension of the SM in which all particles, fermions as well as
bosons, live in a 4 + Æ dimensional brane, which is potentially embedded in a larger space
where only gravity propagates. In this model, momentum conservation along the extra
dimensions dictates that the KK particles can be produced only in pairs. This would make
them much harder to see at present and future colliders; the limits on the compacti�cation
scale of these extra dimensions are so far as low as a few hundred GeV [7, 5, 4].

While there are no a priori constraints on the number of universal extra dimensions,
we shall consider only the simpler case when there is only one such dimension. For Æ = 1,
obtaining the SM chiral fermions out of the zero modes of the 5-dimensional KK �elds
requires that the �fth dimension have an orbifold structure. For simplicity, this is usually
taken to be S1=Z2. In this model, for each SM Dirac fermion q there are two 5-dimensional
fermionic �elds: q� and qÆ. The �rst one is a doublet under SU(2), while the second one is a
singlet. Moreover, the left handed part of q� and the right handed part of qÆ are taken to be
even under the Z2 orbifold symmetry, while q�R and qÆL are taken to be odd under the same
symmetry, therefore projecting out half the zero modes of each KK �eld. The remaining
halves stand for the left and right-handed parts of the SM chiral fermion: qL = q�0; qR = qÆ0 .
The 4D interactions of the nth KK excitation of the q� and qÆ �elds with the SM gauge
bosons are given by:

Lqn�A = � �Q�
n

�
Qe 6 X +

g2
cos�W

��3
2
�Qsin2�W

�
6 Z +

g2p
2

�
0 6 W+

6 W� 0

��
Q�
n

� �qÆnQ

�
e 6 X � g2

sin2�W
cos�W

6 Z
�
qÆn

where Q and �3 are the charge and isospin of the corresponding fermionic �eld, X is the
SM photon �eld, and �W ; e and g2 are the SM Weinberg angle and the electromagnetic and
SU(2) four-dimensional coupling constants.
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At tree level, the masses of the KK excitations come primarily from the 5D kinetic
energy terms, with a small contribution from the Higgs interaction (which gives mass to the
zero-mode �elds):

m2

n =
n2

R2
+ m2

SM

Since the compacti�cation radius R is of order of several hundred GeV�1, this means that
the masses at a given KK level are almost degenerate; KK number conservation thus implies
that the �rst level excitations of light SM particles are stable. This degeneracy is, however,
lifted by loop corrections [6]. The consequences of going beyond tree level can be thought
of as being twofold. First, there are radiative corrections due to the �elds propagating
along the �fth dimensions (called bulk terms in [6]). These corrections are well de�ned and
�nite, due to 1=m2

n suppression for heavier KK modes. For the fermionic �elds they are
zero, while for the gauge �elds they are actually negative, and of order �=R. Second, loop
e�ects induce boundary terms localized on the �xed points of the S1=Z2 orbifold [6, 8]. The
coeÆcients of these terms depend on the fundamental theory at the Plank scale, and they
are unknown in the low energy regime; moreover, the contributions to these terms coming
from one loop corrections in the bulk are logarithmically divergent. Thus, it is necessary
to introduce a cuto� scale �; it is also necessary to specify an ansatz for the de�nition of
unknown coeÆcients. We shall follow the choices made in [6, 7]; we refer the reader to these
references for more details, and here we just summarize the results.

After taking into account the boundary terms contributions, the mass hierarchy between
the �rst level KK excitations is as follows. The heaviest particle is the g�1, which acquires
a positive 20-to-30% correction to its mass (depending on the choice of �). The next to
heaviest particles are the excitations of the SM quarks, for which the mass correction is in
the 20% range. There is a small splitting between the mass of the q� and qÆ quarks, due
to di�erences in the electroweak interactions of the two �elds. Since excitations of the top
quark do not play a big role in our analysis, we can neglect the SM masses of the quarks
involved. The rest of the �rst level KK excitations, arranged in order of decreasing mass,
are the heavy gauge bosons W � and Z�, the L� excitations of the lepton and neutrino �elds
and the lÆ excitations of the same �elds. The corrections to the masses of these particles
are below 10%. Finally, the lightest KK excitation is the �, whose mass does not change
almost at all from tree level.

Due to the fact that the corrections to neutral U(1) and SU(2) gauge �elds ÆmBn and
ÆmAn are di�erent, the mixing angle between these �elds will not be the SM Weinberg angle
anymore. In the limit when Æm2

An
� Æm2

Bn
� m2

W , which generally holds for values of the
compacti�cation scale greater than 200 GeV, the nth level mixing angle �Wn

will actually
be very close to zero [6]. This means that the � will be almost a pure B �eld; also, the
fermions which are singlets under SU(2) (the qÆ and lÆ) will decouple almost completely
from the SU(2) �elds. The interaction between the electroweak gauge boson excitations and
fermionic �elds will be given by:

Lq�An = � �Q e

�
6 Xn

�
Q
cos�Wn

cos�W
� �3

sin(�W � �Wn
)

sin2�W

�
� 6 Zn

�
Q
sin�Wn

cos�W
� �3

cos(�W � �Wn
)

sin2�W

�
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+
g2p
2

�
0 6 W+

6W� 0

��
PL Q

�
n � �q eQ

�
6 Xn

cos�Wn

cos�W
� 6 Zn sin�Wn

cos�W

�
PR qÆn + h.c.

These couplings, together with the mass hierarchy discussed above, dictates the following
decay pattern for the excitations of quarks and gluons produced at a hadron collider (see
also [7]). The g excitations will decay equally through the g�1 ! q�q�1 and g�1 ! q�qÆ1 channels
(and the conjugate ones), where q can be any quark excludig the top, which is too heavy to
be kinematically allowed. The singlet quark excitations qÆ1 will decay directly to the LKP:
qÆ1 ! q�, since its coupling to the Z�

1 boson is suppressed. The decay of the doublet quark
excitations q� will proceed mostly through a three stages chain:

q�1 ! q Z�
1 ! q l l�1 ! q l l � ; Br. � 33%; and (1)

q�1 ! q W �
1 ! q l0 l�1 ! q l0 l � ; Br. � 65%

where l and l0 can be either a lepton or a neutrino. The branching ratios (Br.'s) for the
intermediate Z�

1 and W �
1 decays to leptons are all approximatively equal to 1/6 (decays to

quarks are not kinematically allowed). A small portion of the q�1 decays (about 2%) also
takes place directly to the LKP: q�1 ! q�.

In absence of other interactions, the LKP in UED is stable. Then, the only signal of
KK excitations production at a hadron collider will be missing energy in conjunction with
soft leptons or jets radiated in the course of the decays of these excitations to the LKP.
The phenomenological implications of this model have been studied in [7]. In this paper we
aim to study the implications of having the LKP decay into a KK graviton and SM photon.
Then, the experimental signal will be a striking two photon event with high pT , plus large
missing energy and soft jets or leptons.

There are a number of models which allow for the gravity mediated decay of KK exci-
tations [4, 9, 10]5. As in [5], for illustration we will consider the speci�c case of a fat brane
scenario [10]. In this model, the 4+1 dimensional space in which the UED �elds live is a `fat'
brane in the 4+N dimensional bulk in which gravity propagates. The compacti�cation scale
of the bulk dimensions Rb is of order eV

�1. Thus, in this model, the UED �elds propagate a
short way in the �fth dimension (the width of the brane �R), while gravity propagates all the
way up tp 2�Rb. The couplings of the KK matter excitations with gravity are proportional
with the overlap of their wave functions along the �fth dimension. The extra momentum
along the y direction resulting from KK number violation is absorbed by the brane. The large
density of states for the KK gravitons in the �fth dimension (the splitting between adjacent
levels is of order eV) makes up for the smallness of the gravitational coupling, allowing the
decay width of the matter KK excitations through this mechanism to be phenomenologically
relevant (i.e., they decay within the detector). More details, as well as numerical results for
these gravity mediated decay widths can be found in [5].

5Note, also, that the one-loop boundary terms may induce gravity-mediated LKP decays even in the

absence of new physics. We plan to study this possibility in a further paper.

5



 1/R (GeV)

σ 
(p

b)
10

-4

10
-3

10
-2

10
-1

1

10

200 300 400 500 600

Figure 1: Cross-sections for X 6 ET signal coming from universal extra dimensions at Teva-
tron Run I (solid line) and Run II (dashed line). The kinematic cuts applied are described
in the text.

3 Collider Signals

In this section we will discuss the possibility of discovery of UED KK excitations at the
Tevatron and LHC. We start by assuming that the gravitational decay widths of the �rst
level KK excitations are much smaller than the widths of the decays allowed by the mass
splittings among these particles. This can happen for example in the fat brane scenario, if
the number of extra dimensions in which gravity propagates is N = 6. Then, the only role
of KK number violating gravity interaction is to mediate the decay of the � obtained as a
�nal result of the decays of gluon and quark excitations produced in the collision. 6

Since the quarks and leptons radiated during the decay to � are soft, the experimental
signal for the production of a pair of KK excitations will be two photons plus a large amount
of missing energy (taken away by the KK gravitons). The main backgrounds for this signal
are multijet, direct photon, W + , W + jets, Z ! ee and Z ! �� ! ee events with
misidenti�ed photons and/or mismeasured 6 ET . These backgrounds can be eliminated by
using cuts on the transverse momentum of the photons and the missing energy.

The cross-sections for the X 6 ET signal coming from KK excitations production at
Tevatron are presented in Fig. 1. On the horizontal axis is the compacti�cation scale 1=R.
The solid line is the prediction for the Tevatron Run I (

p
s = 1:8 TeV), while the dashed

line is the prediction for the Tevatron Run II (
p
s = 2 TeV). Here N is taken to be 6. These

results also include cuts on photon pT and 6 ET as described below.
Searches for new physics in the X 6 ET channel at Tevatron have been performed by

the D0 and CDF collaborations [11, 12]. For example, imposing the kinematic cuts on the

6In this analysis we neglect KK particles produced through weak interactions, since the cross-section is

small.
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Figure 2: Cross-sections for X 6 ET signal coming from universal extra dimensions at LHC
for N = 6 (solid line) and N = 2 (dashed line). The kinematic cuts applied are described in
the text.

photon transverse momenta: p1T > 20 GeV; p2T > 12 GeV, and 6 ET > 25 GeV, the DO
experiment �nds two events (with an integrated luminosity of 106 pb�1). The SM prediction
from the above mentioned background is 2:3 � 0:9 events. The solid line in Fig. 1 is the
prediction coming from the UED model, with the kinematic cuts included. In order to set
precise lower bounds on the allowed compacti�cation scale 1=R, a more detailed analysis,
which includes simulation of particles' interactions with the detector, is needed. However,
assuming a detector eÆciency close to 1, the numbers above indicate that the 95% CL upper
limit on the cross section is about 0.05 pb. This means that the Tevatron Run I has excluded
the UED model with gravity mediated decay of the LKP for scales up to about 380 GeV.

For the Tevatron Run II, the following cuts have been proposed in [13]: p1T ; p
2
T > 20 GeV,

6 ET > 50 GeV. The estimated SM background is 0:6�0:12 fb (the large drop compared with
Run I is mainly due to the increase in the 6 ET cut). Again, let's assume that the detector
eÆciency is 1. Then, the 5� discovery cross section with these kinematic cuts is about 4.5 fb
with 2 fb�1 of integrated luminosity (Run IIA), or 1.2 fb with 15 fb�1 integrated luminosity
(Run IIB). Then, UED extra dimensions will be discovered at Run IIA if the compacti�cation
scale is smaller than about 490 GeV (520 GeV in Run IIB). On the other hand, assuming
that the signal observed matches the predicted background, exclusion of the model at 95%
CL can be achieved for 1=R < 510 GeV at Run IIA, or 1=R < 540 GeV at Run IIB.

Fig. 2 contains the cross-sections for X 6 ET production through KK excitations at the
LHC. The solid line corresponds to the case when there are N = 6 extra dimensions in which
gravity can propagate, while the dashed line is the result for N = 2. The kinematic cuts
on the momenta of the two hard photons are p1T ; p

2
T > 200 GeV, 6 ET > 200 GeV. The SM

background with these cuts is estimated in [14] to be roughly 0.05 fb. The 5� discovery
cross-section with 100 fb�1 of integrated luminosity is then about 0.15 fb. We see that the
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LHC can probe the compacti�cation scale in this scenario up to 3 TeV.
The analysis presented so far applies to the case when the widths of the gravity mediated

decays of the KK excitations are smaller than the widths of the decays of one KK excitation
to another. With this condition, the results presented above are independent of the exact
magnitude of these widths, and therefore on the exact parameters of the model. If the
opposite case holds (that is, if gravity mediated decays dominate), then the experimental
signal for the UED scenario will be two jets + missing energy. This case has been studied
in [5]. If, on the other hand, the two sets of decay widths are roughly of the same order of
magnitude, more complicate decay patterns can ensue. Hard leptons (from the decay of q�)
can also appear in the �nal state, along with a combination of photons and jets. The exact
branching ratios depend on the parameters of the model.

Note that the magnitude of the decay widths of the KK excitations can depend quite
strongly on the exact way the model is de�ned. The widths of decays among same level
KK excitations depend on the masses involved, therefore on the cuto� scale � (although
this dependence is only logarithmic), and, maybe more importantly, on the assumptions
made in �xing the unknown coeÆcients of the boundary terms. The widths of the gravity
mediated decays depend, of course, on the exact mechanism which induces these decays.
But even for a speci�c mechanism, let's take the fat brane scenario as an example, they will
depend on parameters like the number of dimensions in which gravity propagates (N), or on
the fundamental Planck scale MD. As a consequence, an analysis of the interplay between
gravity and mass splitting e�ects in the decays of �rst level KK excitations is bound to be
quite model dependent.

In the results presented below we will use the framework described in [6, 7] for the
evaluation of the one loop mass corections to the �rst level KK excitations. The cuto� scale
� is given by �R = 20, and the coupling constants are evaluated at the compacti�cation
scale. For the gravity sector we take MD = 5 TeV, and present results for N = 2 and N = 6.
The widths of the gravity mediated decays are evaluated in accordance with the formulas
given in [5].

Fig. 3 (A and B) contains the values of the decay widths of �rst level KK excitations. The
decay widths of gauge bosons are presented in 3A; the solid lines corrrespond to the gravity
mediated decay widths for N = 2 (1) and N = 6 (2), while the dashed lines correspond to
the widths of the decays due to mass splittings and gauge interactions: g� ! q�q�; q�qÆ + h.c.
(a), W � ! l���; ��l� + h.c. (b), and Z� ! l�l� + h.c. (c). Fig. 3B contains the decay widths
of the fermions; again the solid lines corrrespond to the gravity mediated decay widths for
N = 2 (1) and N = 6 (2), while the dashed lines correspond to the widths of the decays
q� ! q0W �; qZ� (a), qÆ ! q� (b) (this is the result for up-type quarks; the width for down-
type quarks is four times smaller), and l� ! l� (c) (lÆ is not produced in the decay of the
quark and gluon excitations). These results can provide an estimate of what will be the
main decay mode of the KK particles, and therefore what will be the experimental signal;
for example, we see that if N = 2, gravity mediated decay will dominate, so we can expect
two jets + 6 ET in the �nal state; while if N = 6, the dominant signal for the UED model
will be two photons + 6 ET for values of compacti�cation scale up to about 2.5 TeV.

In Fig. 4 we give the actual branching ratios for the  �nal state from the production
of KK excitations. Note that these results not include only information about the relative
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Figure 3: Decay widths for the �rst level KK excitations of gauge bosons (left) and fermions
(right). The solid lines correspond to gravity mediated decays, with N = 2 (1) and N = 6
(2). The dashed lines correspond to decays allowed by mass splittings: g� ! q�q�; q�qÆ + h.c.
(a), W � ! l���; ��l� + h.c. (b), Z� ! l�l� + h.c. (c) (left), and q� ! q0W �; qZ� (a), qÆ ! q�

(b), l� ! l� (c) (right).

decay widths, but also information about the relative ratios of qÆ quarks, q� quarks and g�

produced in the collision. (This is relevant since the qÆ quark, which decays directly to the
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Figure 4: Branching ratios to �nal states:  (solid line), jet +  (dotted line) and lepton (e
or �) +  (dashed line) at the Tevatron Run II (left) for N = 2, and LHC (right) for N = 6.
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�, has a higher branching ratio to a �nal state containing a hard photon that the q� or g�,
which have to decay through a cascade.) Fig. 4A contains the  branching ratio for N = 2
at low compati�cation scale (this branching ratio is 1 for N = 6), while Fig. 4B shows the
 branching ratio for N = 6 at higher compati�cation scale (the branching ratio being 0
for N = 2 here). For completeness we also include the branching ratios to jet+X 6 ET and
lX 6 ET �nal states, where l is a hard e or � coming from the gravity mediated decay of its
�rst KK excitation, and X stands for the soft particles radiated during the decay chain.

4 Conclusions

Large universal extra dimensions models have exciting implications for the phenomenology
of future colliders. In this paper we have studied a model where the signal for UED is an
excess of two photon events (plus missing 6 ET ) at hadron colliders. This �nal state arises
naturally in the context when: a) mass splitting between the �rst level KK excitations allows
the the gluon and quark excitations produced in the initial collision to cascade decay to the
LKP (which is the �); and b) gravity mediates the KK number violating decay of the LKP
into a hard photon, which shows up in the detector, and a graviton, which is not observed.
The condition for this chain of events to take place is that the widths for mass splitting
mediated decays of the KK excitations be larger than the widths of the gravity mediated
decays (while the latter ones are suÆciently large that the � decay happens in the detector).
We discuss a speci�c realization of this model, where the one loop masses of KK particles
are computed in the framework used by Cheng, Matchev and Schmaltz in [6, 7], and gravity
mediated decays take place in the fat brane scenario described in [5].

For cases when all the gluon and quark excitations decay to the LKP �rst, Tevatron
Run I data sets a 380 GeV lower limit on the compacti�cation scale for the UED. Run II
will be able to probe for extra dimensions to 500 GeV with 2 pb�1 and 540 GeV with 15
pb�1, while the LHC reach is about 3 TeV. Limits in this channel will be correspondingly
weakened when gravity mediated decays of g� and q� also play some role. If these decays
dominate, the search for UED excitations should take place in the two jets plus missing 6 ET
channel, as analyzed in [5].
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